![]() |
TfELM
|
Public Member Functions | |
| optimize (self, beta, H, y) | |
Static Public Member Functions | |
| l1_loss (x, reg=1.0) | |
| l2_loss (x, reg=1.0) | |
| l12_loss (x, reg_l1=1.0, reg_l2=1.0) | |
Abstract base class for ELM optimizers.
This class defines common methods for ELM optimizers.
Methods:
-----------
- l1_loss(x, reg=1.0): Computes the L1 loss.
- l2_loss(x, reg=1.0): Computes the L2 loss.
- l12_loss(x, reg_l1=1.0, reg_l2=1.0): Computes the combined L1 and L2 loss.
- optimize(beta, H, y): Optimizes the beta weights.
Note:
-----------
Subclasses must implement the optimize method.
Examples:
-----------
Initialize optimizer (l1 norm)
>>> optimizer = ISTAELMOptimizer(optimizer_loss='l1', optimizer_loss_reg=[0.01])
Initialize a Regularized Extreme Learning Machine (ELM) layer with optimizer
>>> elm = ELMLayer(number_neurons=num_neurons, activation='mish', beta_optimizer=optimizer)
>>> model = ELMModel(elm)
Fit the ELM model to the entire dataset
>>> model.fit(X, y)
|
static |
Computes the combined L1 and L2 loss.
Parameters:
-----------
- x: Input tensor.
- reg_l1 (float): L1 regularization parameter. Defaults to 1.0.
- reg_l2 (float): L2 regularization parameter. Defaults to 1.0.
Returns:
-----------
- Combined L1 and L2 loss.
Examples:
-----------
Initialize optimizer (l2 norm)
>>> optimizer = ISTAELMOptimizer(optimizer_loss='l2', optimizer_loss_reg=[0.01, 0.05])
|
static |
Computes the L1 loss.
Parameters:
-----------
- x: Input tensor.
- reg (float): Regularization parameter. Defaults to 1.0.
Returns:
-----------
- L1 loss.
Examples:
-----------
Initialize optimizer (l1 norm)
>>> optimizer = ISTAELMOptimizer(optimizer_loss='l1', optimizer_loss_reg=[0.01])
|
static |
Computes the L2 loss.
Parameters:
-----------
- x: Input tensor.
- reg (float): Regularization parameter. Defaults to 1.0.
Returns:
-----------
- L2 loss.
Examples:
-----------
Initialize optimizer (l2 norm)
>>> optimizer = ISTAELMOptimizer(optimizer_loss='l2', optimizer_loss_reg=[0.01])
| ELMOptimizer.ELMOptimizer.optimize | ( | self, | |
| beta, | |||
| H, | |||
| y ) |
Optimizes the beta weights.
Parameters:
- beta: Beta weights tensor.
- H: Feature map tensor.
- y: Target tensor.
Returns:
- Optimized beta weights tensor.