TfELM
|
Public Member Functions | |
optimize (self, beta, H, y) | |
Static Public Member Functions | |
l1_loss (x, reg=1.0) | |
l2_loss (x, reg=1.0) | |
l12_loss (x, reg_l1=1.0, reg_l2=1.0) | |
Abstract base class for ELM optimizers. This class defines common methods for ELM optimizers. Methods: ----------- - l1_loss(x, reg=1.0): Computes the L1 loss. - l2_loss(x, reg=1.0): Computes the L2 loss. - l12_loss(x, reg_l1=1.0, reg_l2=1.0): Computes the combined L1 and L2 loss. - optimize(beta, H, y): Optimizes the beta weights. Note: ----------- Subclasses must implement the optimize method. Examples: ----------- Initialize optimizer (l1 norm) >>> optimizer = ISTAELMOptimizer(optimizer_loss='l1', optimizer_loss_reg=[0.01]) Initialize a Regularized Extreme Learning Machine (ELM) layer with optimizer >>> elm = ELMLayer(number_neurons=num_neurons, activation='mish', beta_optimizer=optimizer) >>> model = ELMModel(elm) Fit the ELM model to the entire dataset >>> model.fit(X, y)
|
static |
Computes the combined L1 and L2 loss. Parameters: ----------- - x: Input tensor. - reg_l1 (float): L1 regularization parameter. Defaults to 1.0. - reg_l2 (float): L2 regularization parameter. Defaults to 1.0. Returns: ----------- - Combined L1 and L2 loss. Examples: ----------- Initialize optimizer (l2 norm) >>> optimizer = ISTAELMOptimizer(optimizer_loss='l2', optimizer_loss_reg=[0.01, 0.05])
|
static |
Computes the L1 loss. Parameters: ----------- - x: Input tensor. - reg (float): Regularization parameter. Defaults to 1.0. Returns: ----------- - L1 loss. Examples: ----------- Initialize optimizer (l1 norm) >>> optimizer = ISTAELMOptimizer(optimizer_loss='l1', optimizer_loss_reg=[0.01])
|
static |
Computes the L2 loss. Parameters: ----------- - x: Input tensor. - reg (float): Regularization parameter. Defaults to 1.0. Returns: ----------- - L2 loss. Examples: ----------- Initialize optimizer (l2 norm) >>> optimizer = ISTAELMOptimizer(optimizer_loss='l2', optimizer_loss_reg=[0.01])
ELMOptimizer.ELMOptimizer.optimize | ( | self, | |
beta, | |||
H, | |||
y ) |
Optimizes the beta weights. Parameters: - beta: Beta weights tensor. - H: Feature map tensor. - y: Target tensor. Returns: - Optimized beta weights tensor.