![]() |
TfELM
|
Public Member Functions | |
| __init__ (self, KELMLayer kelm, classification=True) | |
| fit (self, X, y) | |
| predict (self, X) | |
| to_dict (self) | |
| load (cls, str file_path) | |
| save (self, file_path) | |
| predict_proba (self, X) | |
Public Attributes | |
| classes_ | |
| classification | |
| kelm | |
Kernel Extreme Learning Machine (KELM) Model.
This class implements a Kernel Extreme Learning Machine model for classification or regression tasks.
Parameters:
-----------
kelm (KELMLayer): Instance of a Kernel ELM model.
classification (bool, optional): Whether the task is classification or regression.
Defaults to True.
Attributes:
-----------
classes_ (array-like): Unique class labels.
classification (bool): Indicates whether the task is classification or regression.
kelm (KELMLayer): Instance of a Kernel ELM model.
Methods:
-----------
fit(X, y): Fit the KELM model to training data.
predict(X): Predict class labels or regression values for input data.
to_dict(): Convert the model to a dictionary of attributes.
load(file_path): Deserialize an instance from a file.
save(file_path): Serialize the current instance and save it to a HDF5 file.
predict_proba(X): Predict class labels or regression values for input data.
Examples:
-----------
Initialize a Kernel (it can be instanced as Kernel class and its subclasses like CombinedProductKernel)
>>> kernel = CombinedProductKernel([Kernel("rational_quadratic"), Kernel("exponential")])
Initialize a Kernel Extreme Learning Machine (KELM) layer
>>> layer = KELMLayer(kernel, 'mish')
Initialize a Kernel Extreme Learning Machine (KELM) model
>>> model = KELMModel(layer)
Define a cross-validation strategy
>>> cv = RepeatedKFold(n_splits=10, n_repeats=50)
Perform cross-validation to evaluate the model performance
>>> scores = cross_val_score(model, X, y, cv=cv, scoring='accuracy', error_score='raise')
Print the mean accuracy score obtained from cross-validation
>>> print(np.mean(scores))
Fit the ELM model to the entire dataset
>>> model.fit(X, y)
Save the trained model to a file
>>> model.save("Saved Models/KELM_Model.h5")
Load the saved model from the file
>>> model = model.load("Saved Models/KELM_Model.h5")
Evaluate the accuracy of the model on the training data
>>> acc = accuracy_score(model.predict(X), y)
| KELMModel.KELMModel.fit | ( | self, | |
| X, | |||
| y ) |
Fit the KELM model to training data.
Args:
-----------
X (array-like): Training input samples.
y (array-like): Target values.
Examples:
-----------
Initialize a Kernel (it can be instanced as Kernel class and its subclasses like CombinedProductKernel)
>>> kernel = CombinedProductKernel([Kernel("rational_quadratic"), Kernel("exponential")])
Initialize a Kernel Extreme Learning Machine (KELM) layer
>>> layer = KELMLayer(kernel, 'mish')
Initialize a Kernel Extreme Learning Machine (KELM) model
>>> model = KELMModel(layer)
Fit the ELM model to the entire dataset
>>> model.fit(X, y)
| KELMModel.KELMModel.load | ( | cls, | |
| str | file_path ) |
Deserialize an instance from a file. Parameters: - file_path (str): The file path from which to load the serialized instance. Returns: ELMLayer: An instance of the ELMLayer class loaded from the file.
| KELMModel.KELMModel.predict | ( | self, | |
| X ) |
Predict class labels or regression values for input data.
Args:
-----------
X (array-like): Input samples.
Returns:
-----------
array-like: Predicted class labels or regression values.
Examples:
-----------
Initialize a Kernel (it can be instanced as Kernel class and its subclasses like CombinedProductKernel)
>>> kernel = CombinedProductKernel([Kernel("rational_quadratic"), Kernel("exponential")])
Initialize a Kernel Extreme Learning Machine (KELM) layer
>>> layer = KELMLayer(kernel, 'mish')
Initialize a Kernel Extreme Learning Machine (KELM) model
>>> model = KELMModel(layer)
Fit the ELM model to the entire dataset
>>> model.fit(X, y)
Evaluate the accuracy of the model on the training data
>>> acc = accuracy_score(model.predict(X), y)
| KELMModel.KELMModel.predict_proba | ( | self, | |
| X ) |
Predict class labels or regression values for input data.
Args:
-----------
X (array-like): Input samples.
Returns:
-----------
array-like: Predicted class labels or regression values.
Examples:
-----------
Initialize a Kernel (it can be instanced as Kernel class and its subclasses like CombinedProductKernel)
>>> kernel = CombinedProductKernel([Kernel("rational_quadratic"), Kernel("exponential")])
Initialize a Kernel Extreme Learning Machine (KELM) layer
>>> layer = KELMLayer(kernel, 'mish')
Initialize a Kernel Extreme Learning Machine (KELM) model
>>> model = KELMModel(layer)
Fit the ELM model to the entire dataset
>>> model.fit(X, y)
Evaluate the prediction proba of the model on the training data
>>> pred_proba = model.predict_proba(X)
| KELMModel.KELMModel.save | ( | self, | |
| file_path ) |
Serialize the current instance and save it to a HDF5 file. Parameters: - path (str): The file path where the serialized instance will be saved. Returns: None
| KELMModel.KELMModel.to_dict | ( | self | ) |
Convert the model to a dictionary of attributes.
Returns:
--------
attributes : dict
A dictionary containing the attributes of the model.