TfELM
|
Public Member Functions | |
__init__ (self, KELMLayer kelm, classification=True) | |
fit (self, X, y) | |
predict (self, X) | |
to_dict (self) | |
load (cls, str file_path) | |
save (self, file_path) | |
predict_proba (self, X) | |
Public Attributes | |
classes_ | |
classification | |
kelm | |
Kernel Extreme Learning Machine (KELM) Model. This class implements a Kernel Extreme Learning Machine model for classification or regression tasks. Parameters: ----------- kelm (KELMLayer): Instance of a Kernel ELM model. classification (bool, optional): Whether the task is classification or regression. Defaults to True. Attributes: ----------- classes_ (array-like): Unique class labels. classification (bool): Indicates whether the task is classification or regression. kelm (KELMLayer): Instance of a Kernel ELM model. Methods: ----------- fit(X, y): Fit the KELM model to training data. predict(X): Predict class labels or regression values for input data. to_dict(): Convert the model to a dictionary of attributes. load(file_path): Deserialize an instance from a file. save(file_path): Serialize the current instance and save it to a HDF5 file. predict_proba(X): Predict class labels or regression values for input data. Examples: ----------- Initialize a Kernel (it can be instanced as Kernel class and its subclasses like CombinedProductKernel) >>> kernel = CombinedProductKernel([Kernel("rational_quadratic"), Kernel("exponential")]) Initialize a Kernel Extreme Learning Machine (KELM) layer >>> layer = KELMLayer(kernel, 'mish') Initialize a Kernel Extreme Learning Machine (KELM) model >>> model = KELMModel(layer) Define a cross-validation strategy >>> cv = RepeatedKFold(n_splits=10, n_repeats=50) Perform cross-validation to evaluate the model performance >>> scores = cross_val_score(model, X, y, cv=cv, scoring='accuracy', error_score='raise') Print the mean accuracy score obtained from cross-validation >>> print(np.mean(scores)) Fit the ELM model to the entire dataset >>> model.fit(X, y) Save the trained model to a file >>> model.save("Saved Models/KELM_Model.h5") Load the saved model from the file >>> model = model.load("Saved Models/KELM_Model.h5") Evaluate the accuracy of the model on the training data >>> acc = accuracy_score(model.predict(X), y)
KELMModel.KELMModel.fit | ( | self, | |
X, | |||
y ) |
Fit the KELM model to training data. Args: ----------- X (array-like): Training input samples. y (array-like): Target values. Examples: ----------- Initialize a Kernel (it can be instanced as Kernel class and its subclasses like CombinedProductKernel) >>> kernel = CombinedProductKernel([Kernel("rational_quadratic"), Kernel("exponential")]) Initialize a Kernel Extreme Learning Machine (KELM) layer >>> layer = KELMLayer(kernel, 'mish') Initialize a Kernel Extreme Learning Machine (KELM) model >>> model = KELMModel(layer) Fit the ELM model to the entire dataset >>> model.fit(X, y)
KELMModel.KELMModel.load | ( | cls, | |
str | file_path ) |
Deserialize an instance from a file. Parameters: - file_path (str): The file path from which to load the serialized instance. Returns: ELMLayer: An instance of the ELMLayer class loaded from the file.
KELMModel.KELMModel.predict | ( | self, | |
X ) |
Predict class labels or regression values for input data. Args: ----------- X (array-like): Input samples. Returns: ----------- array-like: Predicted class labels or regression values. Examples: ----------- Initialize a Kernel (it can be instanced as Kernel class and its subclasses like CombinedProductKernel) >>> kernel = CombinedProductKernel([Kernel("rational_quadratic"), Kernel("exponential")]) Initialize a Kernel Extreme Learning Machine (KELM) layer >>> layer = KELMLayer(kernel, 'mish') Initialize a Kernel Extreme Learning Machine (KELM) model >>> model = KELMModel(layer) Fit the ELM model to the entire dataset >>> model.fit(X, y) Evaluate the accuracy of the model on the training data >>> acc = accuracy_score(model.predict(X), y)
KELMModel.KELMModel.predict_proba | ( | self, | |
X ) |
Predict class labels or regression values for input data. Args: ----------- X (array-like): Input samples. Returns: ----------- array-like: Predicted class labels or regression values. Examples: ----------- Initialize a Kernel (it can be instanced as Kernel class and its subclasses like CombinedProductKernel) >>> kernel = CombinedProductKernel([Kernel("rational_quadratic"), Kernel("exponential")]) Initialize a Kernel Extreme Learning Machine (KELM) layer >>> layer = KELMLayer(kernel, 'mish') Initialize a Kernel Extreme Learning Machine (KELM) model >>> model = KELMModel(layer) Fit the ELM model to the entire dataset >>> model.fit(X, y) Evaluate the prediction proba of the model on the training data >>> pred_proba = model.predict_proba(X)
KELMModel.KELMModel.save | ( | self, | |
file_path ) |
Serialize the current instance and save it to a HDF5 file. Parameters: - path (str): The file path where the serialized instance will be saved. Returns: None
KELMModel.KELMModel.to_dict | ( | self | ) |
Convert the model to a dictionary of attributes. Returns: -------- attributes : dict A dictionary containing the attributes of the model.