|
| rbf (x, y, alpha=1.0) |
|
| laplacian (x, y, alpha=1.0) |
|
| sigmoid (x, y, alpha=1.0) |
|
| exponential (x, y, alpha=1.0) |
|
| cosine (x, y, alpha=None) |
|
| morlet_wavelet (x, y, alpha=1.0) |
|
| mexican_hat_wavelet (x, y, alpha=1.0) |
|
| haar_wavelet (x, y, alpha=1.0) |
|
| rational_quadratic (x, y, alpha=1.0) |
|
|
| kernel_name |
|
| kernel_param |
|
| ev |
|
◆ __init__()
Kernel.Kernel.__init__ |
( |
| self, |
|
|
| kernel_name = 'rbf', |
|
|
| param = 1.0 ) |
Initialize a kernel function object.
Parameters:
-----------
- kernel_name (str): Name of the kernel function. Default is 'rbf'.
- param (float): Parameter value for the kernel function. Default is 1.0.
Reimplemented in Kernel.CombinedSumKernel, and Kernel.CombinedProductKernel.
◆ cosine()
Kernel.Kernel.cosine |
( |
| x, |
|
|
| y, |
|
|
| alpha = None ) |
|
static |
Cosine similarity kernel.
Computes the cosine similarity between two vectors.
.. math::
K(x, y) = \\frac{{\\langle x, y \\rangle}}{{||x|| \\cdot ||y||}}
Parameters:
-----------
- x (tf.Tensor): Input tensor.
- y (tf.Tensor): Input tensor.
- alpha (None): This parameter is not used. It's included for compatibility with other kernel functions.
Returns:
-----------
tf.Tensor: Kernel values representing cosine similarity between x and y.
◆ exponential()
Kernel.Kernel.exponential |
( |
| x, |
|
|
| y, |
|
|
| alpha = 1.0 ) |
|
static |
Exponential kernel.
.. math::
K(x, y) = \\exp\\left(-\\alpha \\sqrt{||x - y||^2}\\right)
Parameters:
-----------
- x (tf.Tensor): Input tensor.
- y (tf.Tensor): Input tensor.
- alpha (float): Parameter value for the exponential kernel. Default is 1.0.
Returns:
-----------
tf.Tensor: Kernel values.
◆ haar_wavelet()
Kernel.Kernel.haar_wavelet |
( |
| x, |
|
|
| y, |
|
|
| alpha = 1.0 ) |
|
static |
Haar wavelet kernel.
Parameters:
-----------
- x (tf.Tensor): Input tensor.
- y (tf.Tensor): Input tensor.
- alpha (float): Parameter value for the Haar wavelet kernel. Default is 1.0.
Returns:
-----------
tf.Tensor: Kernel values.
◆ laplacian()
Kernel.Kernel.laplacian |
( |
| x, |
|
|
| y, |
|
|
| alpha = 1.0 ) |
|
static |
Laplacian kernel.
.. math::
K(x, y) = \\exp\\left(-\\frac{{||x - y||_1}}{{\\alpha}}\\right)
Parameters:
-----------
- x (tf.Tensor): Input tensor.
- y (tf.Tensor): Input tensor.
- alpha (float): Parameter value for the Laplacian kernel. Default is 1.0.
Returns:
-----------
tf.Tensor: Kernel values.
◆ mexican_hat_wavelet()
Kernel.Kernel.mexican_hat_wavelet |
( |
| x, |
|
|
| y, |
|
|
| alpha = 1.0 ) |
|
static |
Mexican hat wavelet kernel.
.. math::
K(x, y) = \\left(1 - \\left(\\frac{||x - y||^2}{\\alpha}\\right)^2\\right)
\\exp\\left(-\\frac{||x - y||^2}{2\\alpha^2}\\right)
Parameters:
-----------
- x (tf.Tensor): Input tensor.
- y (tf.Tensor): Input tensor.
- alpha (float): Parameter value for the Mexican hat wavelet kernel. Default is 1.0.
Returns:
-----------
tf.Tensor: Kernel values.
◆ morlet_wavelet()
Kernel.Kernel.morlet_wavelet |
( |
| x, |
|
|
| y, |
|
|
| alpha = 1.0 ) |
|
static |
Morlet wavelet kernel.
.. math::
K(x, y) = \\cos\\left(2\\pi\\frac{||x - y||^2}{\\alpha}\\right)
Parameters:
-----------
- x (tf.Tensor): Input tensor.
- y (tf.Tensor): Input tensor.
- alpha (float): Parameter value for the Morlet wavelet kernel. Default is 1.0.
Returns:
-----------
tf.Tensor: Kernel values.
◆ rational_quadratic()
Kernel.Kernel.rational_quadratic |
( |
| x, |
|
|
| y, |
|
|
| alpha = 1.0 ) |
|
static |
Rational quadratic kernel.
.. math::
K(x, y) = 1 - \\frac{||x - y||^2}{||x - y||^2 + \\alpha}
Parameters:
-----------
- x (tf.Tensor): Input tensor.
- y (tf.Tensor): Input tensor.
- alpha (float): Parameter value for the rational quadratic kernel. Default is 1.0.
Returns:
-----------
tf.Tensor: Kernel values.
◆ rbf()
Kernel.Kernel.rbf |
( |
| x, |
|
|
| y, |
|
|
| alpha = 1.0 ) |
|
static |
Radial Basis Function (RBF) kernel.
.. math::
K(x, y) = \\exp\\left(-\\frac{{||x - y||^2}}{{2 \\alpha^2}}\\right)
Parameters:
-----------
- x (tf.Tensor): Input tensor.
- y (tf.Tensor): Input tensor.
- alpha (float): Parameter value for the RBF kernel. Default is 1.0.
Returns:
tf.Tensor: Kernel values.
◆ sigmoid()
Kernel.Kernel.sigmoid |
( |
| x, |
|
|
| y, |
|
|
| alpha = 1.0 ) |
|
static |
Sigmoid kernel.
.. math::
K(x, y) = \\tanh(\\alpha \\cdot \\langle x, y \\rangle)
Parameters:
-----------
- x (tf.Tensor): Input tensor.
- y (tf.Tensor): Input tensor.
- alpha (float): Parameter value for the sigmoid kernel. Default is 1.0.
Returns:
-----------
tf.Tensor: Kernel values.
The documentation for this class was generated from the following file: