![]() |
TfELM
|
Public Member Functions | |
| __init__ (self, number_neurons, activation='tanh', act_params=None, C=1.0, ELMOptimizer beta_optimizer=None, is_orthogonalized=False, weight_method='wei-1', weight_param=4, **params) | |
| fit (self, x, y) | |
| predict (self, x) | |
| predict_proba (self, x) | |
| calc_output (self, x) | |
| __str__ (self) | |
| count_params (self) | |
| to_dict (self) | |
| load (cls, attributes) | |
Public Attributes | |
| weight_method | |
| weight_param | |
| input | |
| beta | |
| error_history | |
| feature_map | |
| output | |
| number_neurons | |
| activation_name | |
| act_params | |
| C | |
| is_orthogonalized | |
| alpha | |
| bias | |
Weighted Extreme Learning Machine Layer.
This layer extends the functionality of the ELMLayer by incorporating weighted samples during training.
Args:
-----------
number_neurons (int): The number of neurons in the hidden layer.
activation (str, optional): The activation function to use. Defaults to 'tanh'.
act_params (dict, optional): Additional parameters for the activation function. Defaults to None.
C (float, optional): Regularization parameter. Defaults to 1.0.
beta_optimizer (ELMOptimizer, optional): Optimizer for updating output weights. Defaults to None.
is_orthogonalized (bool, optional): Whether to orthogonalize the hidden layer weights. Defaults to False.
weight_method (str, optional): Method for computing sample weights. Defaults to 'wei-1'. Oprions: 'wei-1',
'wei-2', 'ban-1', 'ban-decay'
weight_param (int, optional): Parameter for weight computation (if applicable). Defaults to 4.
**params: Additional parameters.
Attributes:
-----------
weight_method (str): Method for computing sample weights.
weight_param (int): Parameter for weight computation (if applicable).
Methods:
-----------
fit(x, y): Fit the layer to the input-output pairs.
predict(x): Predict the output for input data.
predict_proba(x): Predict class probabilities for input data.
calc_output(x): Calculate the output for input data.
count_params(): Count the number of trainable and non-trainable parameters.
to_dict(): Convert layer attributes to a dictionary.
load(attributes): Load layer attributes from a dictionary.
Example:
-----------
>>> layer = WELMLayer(number_neurons=1000, activation='tanh', weight_method='wei-1')
>>> model = ELMModel(layer)
| WELMLayer.WELMLayer.__str__ | ( | self | ) |
String representation of the layer.
Returns:
-----------
str: String representation.
| WELMLayer.WELMLayer.calc_output | ( | self, | |
| x ) |
Calculate the output for input data.
Args:
-----------
x (tf.Tensor): Input data.
Returns:
-----------
tf.Tensor: Calculated output.
| WELMLayer.WELMLayer.count_params | ( | self | ) |
Count the number of trainable and non-trainable parameters.
Returns:
-----------
dict: Dictionary containing counts of trainable and non-trainable parameters.
| WELMLayer.WELMLayer.fit | ( | self, | |
| x, | |||
| y ) |
Fit the WELMLayer to the input-output pairs.
Args:
-----------
x (tf.Tensor): Input data.
y (tf.Tensor): Output data.
Returns:
-----------
None
Example:
-----------
>>> layer = WELMLayer(number_neurons=1000, activation='tanh', weight_method='wei-1')
>>> layer.build(X.shape)
>>> layer.fit(X_train, y_train)
| WELMLayer.WELMLayer.load | ( | cls, | |
| attributes ) |
Load layer attributes from a dictionary.
Args:
-----------
attributes (dict): Dictionary containing layer attributes.
Returns:
-----------
WELMLayer: Loaded WELMLayer instance.
| WELMLayer.WELMLayer.predict | ( | self, | |
| x ) |
Predict the output for input data.
Args:
-----------
x (tf.Tensor): Input data.
Returns:
-----------
tf.Tensor: Predicted output.
Example:
-----------
>>> layer = WELMLayer(number_neurons=1000, activation='tanh', weight_method='wei-1')
>>> layer.build(X.shape)
>>> layer.fit(X_train, y_train)
>>> pred = layer.predict(X_test)
| WELMLayer.WELMLayer.predict_proba | ( | self, | |
| x ) |
Predict class probabilities for input data.
Args:
-----------
x (tf.Tensor): Input data.
Returns:
-----------
tf.Tensor: Predicted class probabilities.
Example:
-----------
>>> layer = WELMLayer(number_neurons=1000, activation='tanh', weight_method='wei-1')
>>> layer.build(X.shape)
>>> layer.fit(X_train, y_train)
>>> pred = layer.predict_proba(X_test)
| WELMLayer.WELMLayer.to_dict | ( | self | ) |
Convert layer attributes to a dictionary.
Returns:
-----------
dict: Dictionary containing layer attributes.