TfELM
|
Public Member Functions | |
__init__ (self, number_neurons, activation='tanh', act_params=None, C=1.0, ELMOptimizer beta_optimizer=None, is_orthogonalized=False, weight_method='wei-1', weight_param=4, **params) | |
fit (self, x, y) | |
predict (self, x) | |
predict_proba (self, x) | |
calc_output (self, x) | |
__str__ (self) | |
count_params (self) | |
to_dict (self) | |
load (cls, attributes) | |
Public Attributes | |
weight_method | |
weight_param | |
input | |
beta | |
error_history | |
feature_map | |
output | |
number_neurons | |
activation_name | |
act_params | |
C | |
is_orthogonalized | |
alpha | |
bias | |
Weighted Extreme Learning Machine Layer. This layer extends the functionality of the ELMLayer by incorporating weighted samples during training. Args: ----------- number_neurons (int): The number of neurons in the hidden layer. activation (str, optional): The activation function to use. Defaults to 'tanh'. act_params (dict, optional): Additional parameters for the activation function. Defaults to None. C (float, optional): Regularization parameter. Defaults to 1.0. beta_optimizer (ELMOptimizer, optional): Optimizer for updating output weights. Defaults to None. is_orthogonalized (bool, optional): Whether to orthogonalize the hidden layer weights. Defaults to False. weight_method (str, optional): Method for computing sample weights. Defaults to 'wei-1'. Oprions: 'wei-1', 'wei-2', 'ban-1', 'ban-decay' weight_param (int, optional): Parameter for weight computation (if applicable). Defaults to 4. **params: Additional parameters. Attributes: ----------- weight_method (str): Method for computing sample weights. weight_param (int): Parameter for weight computation (if applicable). Methods: ----------- fit(x, y): Fit the layer to the input-output pairs. predict(x): Predict the output for input data. predict_proba(x): Predict class probabilities for input data. calc_output(x): Calculate the output for input data. count_params(): Count the number of trainable and non-trainable parameters. to_dict(): Convert layer attributes to a dictionary. load(attributes): Load layer attributes from a dictionary. Example: ----------- >>> layer = WELMLayer(number_neurons=1000, activation='tanh', weight_method='wei-1') >>> model = ELMModel(layer)
WELMLayer.WELMLayer.__str__ | ( | self | ) |
String representation of the layer. Returns: ----------- str: String representation.
WELMLayer.WELMLayer.calc_output | ( | self, | |
x ) |
Calculate the output for input data. Args: ----------- x (tf.Tensor): Input data. Returns: ----------- tf.Tensor: Calculated output.
WELMLayer.WELMLayer.count_params | ( | self | ) |
Count the number of trainable and non-trainable parameters. Returns: ----------- dict: Dictionary containing counts of trainable and non-trainable parameters.
WELMLayer.WELMLayer.fit | ( | self, | |
x, | |||
y ) |
Fit the WELMLayer to the input-output pairs. Args: ----------- x (tf.Tensor): Input data. y (tf.Tensor): Output data. Returns: ----------- None Example: ----------- >>> layer = WELMLayer(number_neurons=1000, activation='tanh', weight_method='wei-1') >>> layer.build(X.shape) >>> layer.fit(X_train, y_train)
WELMLayer.WELMLayer.load | ( | cls, | |
attributes ) |
Load layer attributes from a dictionary. Args: ----------- attributes (dict): Dictionary containing layer attributes. Returns: ----------- WELMLayer: Loaded WELMLayer instance.
WELMLayer.WELMLayer.predict | ( | self, | |
x ) |
Predict the output for input data. Args: ----------- x (tf.Tensor): Input data. Returns: ----------- tf.Tensor: Predicted output. Example: ----------- >>> layer = WELMLayer(number_neurons=1000, activation='tanh', weight_method='wei-1') >>> layer.build(X.shape) >>> layer.fit(X_train, y_train) >>> pred = layer.predict(X_test)
WELMLayer.WELMLayer.predict_proba | ( | self, | |
x ) |
Predict class probabilities for input data. Args: ----------- x (tf.Tensor): Input data. Returns: ----------- tf.Tensor: Predicted class probabilities. Example: ----------- >>> layer = WELMLayer(number_neurons=1000, activation='tanh', weight_method='wei-1') >>> layer.build(X.shape) >>> layer.fit(X_train, y_train) >>> pred = layer.predict_proba(X_test)
WELMLayer.WELMLayer.to_dict | ( | self | ) |
Convert layer attributes to a dictionary. Returns: ----------- dict: Dictionary containing layer attributes.